Variational principle for some nonlinear problems
نویسندگان
چکیده
Abstract A variational principle is established by the semi-inverse method and used to solve approximately a nonlinear problem Ritz method. In this process,it may be difficult large system of algebraic equations,the Groebner bases theory (Buchberger’s algorithm) applied problem. The results show that approach much simpler more efficient.
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
PRINCIPLE AND ITS APPLICATIONS TO NONLINEAR VARIATIONAL PROBLEMS Ram
This paper deals with a crucial role of the partial relaxed monotonicity – a relatively new and less explored concept – in the approximation solvability of a class of nonlinear variational problems on Hilbert spaces, though the convergence analysis much depends on the general auxiliary minimization problem principle. The nonlinear variational inequality problem (NVIP) is stated as follows: find...
متن کاملA Penalty Method for Some Nonlinear Variational Obstacle Problems∗
We formulate a penalty method for the obstacle problem associated with a nonlinear variational principle. It is proven that the solution to the relaxed variational problem (in both the continuous and discrete settings) is exact for finite parameter values above some calculable quantity. To solve the relaxed variational problem, an accelerated forward-backward method is used, which ensures conve...
متن کاملA variational principle for nonlinear transport equations
We verify -after appropriate modificationsan old conjecture of Brezis-Ekeland [3] concerning the feasibility of a global and variational approach to the problems of existence and uniqueness of solutions of non-linear transport equations, which do not normally fit in an Euler-Lagrange framework. Our method is based on a concept of “anti-self duality” that seems to be inherent in many problems, i...
متن کاملVariational principle for general diffusion problems
We employ the Monge-Kantorovich mass transfer theory to study existence of solutions for a large class of parabolic partial differential equations. We deal with non-homogeneous nonlinear diffusion problems (of Fokker-Planck type) with time dependent coefficients. This work greatly extends the applicability of known techniques based on constructing weak solutions by approximation with time-inter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Gem - International Journal on Geomathematics
سال: 2022
ISSN: ['1869-2680', '1869-2672']
DOI: https://doi.org/10.1007/s13137-022-00194-6